A pre-initiation complex at the 3′-end of genes drives antisense transcription independent of divergent sense transcription
نویسندگان
چکیده
The precise nature of antisense transcripts in eukaryotes such as Saccharomyces cerevisiae remains elusive. Here we show that the 3' regions of genes possess a promoter architecture, including a pre-initiation complex (PIC), which mirrors that at the 5' region and which is much more pronounced at genes with a defined antisense transcript. Remarkably, for genes with an antisense transcript, average levels of PIC components at the 3' region are ∼60% of those at the 5' region. Moreover, at these genes, average levels of nascent antisense transcription are ∼45% of sense transcription. We find that this 3' promoter architecture persists for highly transcribed antisense transcripts where there are only low levels of transcription in the divergent sense direction, suggesting that the 3' regions of genes can drive antisense transcription independent of divergent sense transcription. To validate this, we insert short 3' regions into the middle of other genes and find that they are capable of both initiating antisense transcripts and terminating sense transcripts. Our results suggest that antisense transcription can be regulated independently of divergent sense transcription in a PIC-dependent manner and we propose that regulated production of antisense transcripts represents a fundamental and widespread component of gene regulation.
منابع مشابه
Transcriptional Coactivator CBP Facilitates Transcription Initiation and Reinitiation of HTLV-I and Cyclin D2 Promoter
HTLV-I is the etiologic agent for adult T-cell leukemia/lymphoma (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Taxi, the major activator of this virus, is a 40- kDa (353 amino acid) phosphoprotein, predominantly localized in the nucleus of the host cell, which functions to trans-activate both viral and cellular promoters. Recently it has been shown that HTLV-I a...
متن کاملThe Potential Mechanism of ZFX Involvement in Cell Growth
Background:The zinc-finger X linked (ZFX) gene encodes a transcription factor that acts as a regulator of self-renewal of stem cells. Due to the role of ZFX in cell growth, understanding ZFX protein-protein interactions helps to clarify its proper biological functions in signaling pathways. The aim of this study is to define ZFX protein-protein interactions and the role of ZFX in cell growth. ...
متن کاملDivergent transcription from active promoters.
Transcription initiation by RNA polymerase II (RNAPII) is thought to occur unidirectionally from most genes. Here, we present evidence of widespread divergent transcription at protein-encoding gene promoters. Transcription start site-associated RNAs (TSSa-RNAs) nonrandomly flank active promoters, with peaks of antisense and sense short RNAs at 250 nucleotides upstream and 50 nucleotides downstr...
متن کاملAntisense RNA polymerase II divergent transcripts are P-TEFb dependent and substrates for the RNA exosome.
Divergent transcription occurs at the majority of RNA polymerase II (RNAPII) promoters in mouse embryonic stem cells (mESCs), and this activity correlates with CpG islands. Here we report the characterization of upstream antisense transcription in regions encoding transcription start site associated RNAs (TSSa-RNAs) at four divergent CpG island promoters: Isg20l1, Tcea1, Txn1, and Sf3b1. We fin...
متن کاملThe Association Between H3K4me3 and Antisense Transcription
Histone H3 lysine 4 trimethylation (H3K4me3) is well known to occur in the promoter region of genes for transcription activation. However, when investigating the H3K4me3 profiles in the mouse cerebrum and testis, we discovered that H3K4me3 also has a significant enrichment at the 3' end of actively transcribed (sense) genes, named as 3'-H3K4me3. 3'-H3K4me3 is associated with ~15% of protein-cod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 40 شماره
صفحات -
تاریخ انتشار 2012